Danish Sound Cluster 20221123

### Deep neural networks for speaker separation for hearing impaired listeners

- but also some noise reduction

Lars Bramsløw







TAMPERE UNIVERSITY OF TECHNOLOGY



#### **Overview**

- Speaker separation: two competing voices
- Noise reduction: voice-in-noise
- Summary



### **Speaker separation (voice-on-voice)**









## Separating two voices with low delay





#### **Training the DNN with the truth**





#### Ideal and estimated ratio mask



Speaker F2 from F2F3, mix 3, model LSTM-IRM: Ideal mask. Avg 0.6



## **Competing voices separated**

# Statuen har ikke moget hoved

- Example: pairs of sentences from the Danish Hearing In Noise Test
- Voices known in training
- Lots of glimpsing possible





## **Danish HINT material**

- Overall: 13 lists of 20 sentences each
- Talkers: 3 male, 3 female (originally 1 male)
  - Combined in male-male, female-female and male-female pairs.
  - The DNN is speaker-specific, trained per speaker pair
- DNN validation: 1 list
- Training material: 4 lists
- Listening test: 8 lists



## Speech intelligibility benefit: Competing voices test

## Statyen har skkeen og et keowed

|                                         |                                            | cvt_demo_gui                     |                     | _ □                                                 |
|-----------------------------------------|--------------------------------------------|----------------------------------|---------------------|-----------------------------------------------------|
|                                         | DN                                         | N Test 1                         | .0                  |                                                     |
| List no:<br>13 (train) v                | TP: 100<br>TP 1000: 3<br>trials<br>Train 1 | o Gain<br>train and 20 test<br>✓ | n (dB): -50<br>Next | <b>Right</b><br>List no:<br>11 (train) $\checkmark$ |
| l regnbuen se                           | s alle farver                              | Kvinde                           | Drys retten         | med hakket persille                                 |
| Speech Left HINT-M HINT-F               | Button Group     INT     HINTproc          | Pair 1/20                        |                     | Speech Right                                        |
|                                         |                                            | Word score:                      | 10 N/A              |                                                     |
| Presentation<br>Separate<br>Sum<br>HRTF |                                            | Play                             |                     | ☑ Before<br>After                                   |
| Azimuth left: 5.0 deg                   |                                            | Stop                             | Azim                | uth right: -5.0 deg                                 |
| 4                                       | Þ                                          | Save wav                         | 4                   | Þ                                                   |

- Pairs of sentences from the Danish HINT (Hearing In Noise Test).
- Cueing by
  - First word = Single target
  - Last word = Dual targets: Competing Voices (CVT)
- Hearing loss compensated individually (NAL-R)

#### **15 hearing-impaired listeners**



#### Processing

- 1. Sum (unprocessed)
- 2. Separate (ideal)

<u>.</u>

Ī

- 3. Feed Forward DNN (FDNN)
- 4. Long-Term Short-Term Memory Neural Net (LSTM)
  - 5. Convolutional Recurrent Neural Net (CRNN)

Roughly 3.5 mio weights

Naithani et al, CHAT 2017, Stockholm Naithani et al, WASPAA 2017, Mohonk



#### **Speech segregation results (competing voices)**





#### **Speech separation results (single target)**







#### **Different benefit for different people**





## **Noise reduction**



#### Voice in noise

- Known and unknown voices in known noise
  - more common scenario
  - evaluate generalization ability
- New DNN+mask candidates



## **Named DNN conditions**

- 1. Sum (= input)
- 2. FDNN known voice
- 3. LSTM known voice
- 4. LSTM unknown voice
- 5. LSTM unknown voice + multi resolution mask
- 6. LSTM unknown voice + phase sensitive mask
- 7. Ideal ratio mask

Maximum 20 dB attenuation (except 7.) Roughly 3.5 mio weights



## **Test stimuli**

- Danish HINT sentences
  - M1-M6, F1-F6 (12 talkers)
  - 200 260 sentences ~ 6 min
- Target talkers:
  - M1, M2, F1, F3
  - Speaker dependent: train on these (test other sentences)
  - Speaker independent: do not train on these (test all sentences)
- Noise from the 'ICRA natural sound library'
  - P1: Party noise
    - train at -3..+3 dB SNR, test at +0 dB
  - S1: Shopping center noise
    - train at -3..+3 dB, test at +0 dB.

#### **Voice-on-noise test**

## Statuen har ikke noget hoved

- Sentences from the Danish HINT
- 0 dB SNR





#### **Results: post hoc**



#### HINT Test: Speech Reception Scores



P1

**S1** 

#### Processing

- Sum (= input)
- FDNN known voice
- 3. LSTM known voice
- LSTM unknown voice 4.
- LSTM unknown voice + multi resolution mask
- LSTM unknown voice + phase sensitive mask
- 7. Ideal ratio mask

### **Conclusion, speaker separation**

- Competing voices test: Relevant, significant effect = 13% point. The user has all the information!
- Target-masker test: Large effect = 37% point The user must chose!
- All DNN modes (topologies) give the same improvement.



## **Conclusion, noise reduction**

- Party noise: ~16 %-point (1.5 dB)
  - known voice FDNN
  - unknown voice LSTM
- Shopping centre: no benefit
  - Less modulated = less glimpses
- Unknown noise is a challenge!



## Thank you!

