Speech Separation in Wireless Acoustic Sensor **Networks**

November 23, 2022

Mads Græsbøll Christensen

Audio Analysis Lab, CREATE Aalborg University, Denmark **Website:** http://audio.create.aau.dk **Youtube:** http://tinyurl.com/yd8mo55z

Example: conventional microphone array

What if . . . ?

Motivation

Conventional array

- \blacktriangleright array geometry known
- \blacktriangleright synchronized sampling
- \blacktriangleright centralized processing

Wireless acoustic sensor network (WASN)

- \blacktriangleright array geometry unknown
- \blacktriangleright unsynchronized sampling
- \blacktriangleright centralized/distributed processing

Some applications

- \blacktriangleright Meetings
- \blacktriangleright Hearing aids
- \blacktriangleright Hearables
- \blacktriangleright Smart homes
- \blacktriangleright Digital assistants
- \blacktriangleright Surveillance
- \blacktriangleright In T

[Speech Presence Probability Estimation](#page-11-0)

[Single-channel Noise PSD estimation](#page-19-0)

[Microphone Clustering & Distributed Implementation](#page-27-0)

[Experimental Results](#page-32-0)

[Summary](#page-42-0)

Multi-channel Wiener Filtering The speech enhancement problem

From *K* noisy microphone signals $\{y_k(n)\}_{k=1}^K$, we wish to estimate a target speech component $s(n)$ to improve the

- \blacktriangleright speech intelligibility and quality
- \blacktriangleright speech recognition performance

However,

- \triangleright we have more unknowns than observations so
- \triangleright we need prior information about the speech, room, and/or noise to solve the problem!
- \triangleright even defining the target speech is difficult in WASN!

Multi-channel Wiener Filtering Mathematical model

AND NEW GROUN

At microphone *k*, we observe a noisy speech signal

$$
y_k(n) = (g_k * s)(n) + e_k(n) = x_k(n) + e_k(n)
$$
 (1)

where

 $g_k(n)$ is the impulse response from the source to microphone *k*

s(*n*) is the clean speech at microphone 1 (i.e., $g_1(n) = \delta(n)$),

e^k (*n*) is the noise (including interfering speech), and

x^k (*n*) is the clean speech signal recorded at microphone *k*. In the frequency-domain, we have that

$$
Y_k(\omega) = G_k(\omega)S(\omega) + E_k(\omega) = X_k(\omega) + E_k(\omega).
$$
 (2)

M. G. Christensen [| Speech Separation in Wireless Acoustic Sensor Networks](#page-0-0)

Multi-channel Wiener Filtering Mathematical model

We can collect all *K* microphone signals in a vector so that

$$
\mathbf{Y}(\omega) = \begin{bmatrix} Y_1(\omega) \\ Y_2(\omega) \\ \vdots \\ Y_K(\omega) \end{bmatrix} = \begin{bmatrix} 1 \\ G_2(\omega) \\ \vdots \\ G_K(\omega) \end{bmatrix} S(\omega) + \begin{bmatrix} E_1(\omega) \\ E_2(\omega) \\ \vdots \\ E_K(\omega) \end{bmatrix}
$$
(3)
= $\mathbf{G}(\omega)S(\omega) + \mathbf{E}(\omega)$. (4)

ASKARD MEVIL GROUND

$$
\mathbf{Y}(\omega) \longrightarrow \qquad \qquad \mathbf{H}(\omega) \qquad \longrightarrow \hat{S}(\omega)
$$

We will extract $S(\omega)$ by designing a filter $H(\omega)$ which

- **Filters out** $E(\omega)$ **and**
- \blacktriangleright does not change $S(\omega)$,

i.e.,

$$
\hat{S}(\omega) = H^{H}(\omega) Y(\omega) = \underbrace{H^{H}(\omega) G(\omega) S(\omega)}_{\text{should be } S(\omega)} + \underbrace{H^{H}(\omega) E(\omega)}_{\text{should be 0}}.
$$
 (5)

ASKARD MEVIL GROUND

If we define the objective

$$
J(\boldsymbol{H}(\omega)) = \mathbb{E}\left[|S(\omega) - \boldsymbol{H}^H(\omega)\boldsymbol{G}(\omega)S(\omega)|^2\right] + \mathbb{E}\left[|0 - \boldsymbol{H}^H(\omega)\boldsymbol{E}(\omega)|^2\right],
$$
\n(6)

its minimiser is the multi-channel Wiener filter given by

$$
\hat{\boldsymbol{H}}_{\text{MCWF}}(\omega) = \boldsymbol{\Phi}_{\gamma\gamma}^{-1}(\omega) \left([\boldsymbol{\Phi}_{\gamma\gamma}(\omega)]_{:,1} - [\boldsymbol{\Phi}_{EE}(\omega)]_{:,1} \right) \tag{7}
$$

where

- $\Phi_{YY}(\omega)$ is a matrix containing the cross PSDs of the microphone signals, and
- $\Phi_{FE}(\omega)$ is a matrix containing the cross PSDs of the noise signals.

ANTIQUE NEW GROUN

Some comments:

- \blacktriangleright We do not need to know the array geometry (i.e., $\bm{G}(\omega)$) to implement the multi-channel Wiener filter.
- \blacktriangleright The multi-channel Wiener filter can cope with **unsynchronized** microphones to the extend that $G(\omega)$ can absorb the synchronisation errors (i.e., clock offsets).
- \blacktriangleright The multi-channel Wiener filter can be implemented using distributed processing.
- \blacktriangleright While $\Phi_{YY}(\omega)$ is easy to compute from the microphone signals,

$$
\Phi_{EE}(\omega) = \begin{bmatrix} \phi_{E_1E_1}(\omega) & \cdots & \phi_{E_1E_K}(\omega) \\ \vdots & \ddots & \vdots \\ \phi_{E_KE_1}(\omega) & \cdots & \phi_{E_KE_K}(\omega) \end{bmatrix}
$$
(8)

is much harder.

AND NEW GROUND

[Speech Presence Probability Estimation](#page-11-0)

[Single-channel Noise PSD estimation](#page-19-0)

[Microphone Clustering & Distributed Implementation](#page-27-0)

[Experimental Results](#page-32-0)

[Summary](#page-42-0)

For microphone pair (i, j) in frame *l*, the noise cross PSD $\hat{\phi}_{E_i E_j}(\omega, l)$ can be estimated recursively using a first-order IIR filter as

$$
\hat{\phi}_{E_iE_j}(\omega, I) = \alpha(\omega, I)\hat{\phi}_{E_iE_j}(\omega, I - 1) + (1 - \alpha(\omega, I))\hat{\phi}_{Y_iY_j}(\omega, I) \qquad (9)
$$

where

 $\hat{\phi}_{Y_i Y_j}(\omega, l)$ is the cross PSD between microphone signals *i* and *j*, and

 $\alpha(\omega, l)$ is the **speech presence probability** (SPP).

In a traditional voice activity detector (VAD), we make a hard decision.

*H*₀: There is no speech. Set $\alpha(\omega, l) = 0$ so that

$$
\hat{\phi}_{E_i E_j}(\omega, I) = \hat{\phi}_{Y_i Y_j}(\omega, I) \tag{10}
$$

*H*₁: There is speech. Set $\alpha(\omega, l) = 1$ so that

$$
\hat{\phi}_{E_i E_j}(\omega, I) = \hat{\phi}_{E_i E_j}(\omega, I - 1)
$$
\n(11)

NEW G

The SPP is a soft decision which we here define as

$$
\alpha(\omega, I) = p(H_1(\omega, I) | \mathbf{Y}(\omega, I), \theta(\omega, I)) \in [0, 1]
$$
 (12)

where

 $p(\cdot)$ is a probability mass function

 $\theta(\omega, l)$ are model parameters (which are initially assumed known).

To compute the SPP, we have to be a little more explicit about our signal model.

Y. Zhao, J. K. Nielsen, J. Chen, and M. G. Christensen, *Modelbased distributed node clustering and multi-speaker speech presence probability estimation in wireless acoustic sensor networks*, The Journal of the Acoustical Society of America 147, 4189-4201 (2020).

EWG NEW GRO

Signal model

Assume for microphone *k* that¹

No speech:
$$
p(Y_k | \phi_{E_k E_k}, H_0) = \mathcal{CN}(0, \phi_{E_k E_k})
$$
 (13)

$$
\text{Speedch:} \qquad p(Y_k | \phi_{E_k E_k}, \phi_{X_k X_k}, H_1) = \mathcal{CN}(0, \phi_{E_k E_k} + \phi_{X_k X_k}). \qquad (14)
$$

Note that

- \blacktriangleright this model is not completely consistent with the derivation of the multi-channel Wiener filter since it ignores correlation between the microphones, and
- \blacktriangleright the model parameters for microphone k are

$$
\theta_k(\omega, I) = \begin{bmatrix} \phi_{E_k E_k} & \phi_{X_k X_k} \end{bmatrix}^T . \tag{15}
$$

AND NEW GROUP

¹We sometimes omit the frequency and frame indices to simplify the notation.

Based on the model, we can calculate the likelihood ratio as

$$
\mathcal{L}(Y_k|\theta_k) = \frac{p(Y_k|\theta_k(\omega, l), H_1)}{p(Y_k|\theta_k(\omega, l), H_0)}
$$
(16)

$$
= (1 + \xi_k)^{-1} \exp\left(\frac{|Y_k|^2}{\phi_{E_k E_k}} \frac{\xi_k}{\xi_k + 1}\right),
$$

where ξ_k is the so-called a-priori SNR given by

$$
\xi_k = \frac{\phi_{X_k X_k}}{\phi_{E_k E_k}} \,. \tag{18}
$$

AND NEW GROUND

Since (also for H_0)

$$
p(\mathbf{Y}|\theta, H_1) = \prod_{k=1}^{K} p(Y_k|\theta_k, H_1) \text{ and } \mathcal{L}(Y|\theta) = \prod_{k=1}^{K} \mathcal{L}(Y_k|\theta_k) \quad (19)
$$

it follows that so that the SPP can be calculated as

$$
\alpha = p(H_1 | \mathbf{Y}, \theta) = \frac{p(H_1)\mathcal{L}(\mathbf{Y}|\theta)}{p(H_0) + p(H_1)\mathcal{L}(\mathbf{Y}|\theta)}
$$
(20)

where $p(H_1)$ and $p(H_0)$ are priors. We can also easily incorporate multiple frames and multiple frequencies in the computation of the likelihood ratio!

AND NEW GROUN

So what did we observe?

- \triangleright If we have a SPP, we can estimate the required noise cross PSDs to run the multi-channel Wiener filter.
- \blacktriangleright The SPP can be computed as
	- 1. compute the likelihood ratio for every channel
	- 2. combine the *K* likelihood ratios with prior probabilities.
- \blacktriangleright To compute the likelihood ratio in channel k , we have to know

$$
\theta_k(\omega, I) = \begin{bmatrix} \phi_{E_k E_k} & \phi_{X_k X_k} \end{bmatrix}^T . \tag{21}
$$

In practice, however, these PSDs are unknown and must be estimated from the data.

AND NEW GROUP

[Speech Presence Probability Estimation](#page-11-0)

[Single-channel Noise PSD estimation](#page-19-0)

[Microphone Clustering & Distributed Implementation](#page-27-0)

[Experimental Results](#page-32-0)

[Summary](#page-42-0)

Single-channel Noise PSD estimation

Many methods exist for single-channel noise PSD estimation. The most well-known are

- \blacktriangleright minimum statistics (MS),
- \triangleright improved minima controlled recursive averaging (IMCRA), and
- \triangleright minimum mean squared error (MMSE).

These methods work well for **stationary noise**, but not for nonstationary noise.

 \blacktriangleright In our previous work, we developed a new model-based noise PSD estimator which works much better for nonstationary noise (e.g., bable noise).

AND MEW GROUND

Recall that we modelled the *k*'th microphone signal as

$$
p(Y_k|\phi_{E_kE_k},\phi_{X_kX_k},H_1)=\mathcal{CN}(0,\phi_{E_kE_k}+\phi_{X_kX_k})
$$
 (22)

where

 $\phi_{\textit{\textbf{E}}_{\textit{\textbf{k}}}}$ is the noise PSD, and

 $\phi_{X_k X_k}$ is the speech PSD (as observed at microphone $k)$. To estimate these, we do the following:

- 1. Assume that the clean speech and noise can be accurately modelled by **autoregressive** (AR) processes.
- 2. Pre-train codebooks of AR-vectors (i.e., parametrised speech and noise PSDs) that are typical for speech and for noise.
- 3. Form models of the microphone signal from all combinations of trained speech and noise PSDs.
- 4. Infer model parameters and probabilities and compute model averaged PSD estimates.

ASSESSM GROUND

1. Autoregressive spectral modelling

- \triangleright AR processes have been used extensively in speech coding.
- \triangleright The PSD of an AR process is

$$
\phi_{\text{AR}}(\omega) = \frac{\sigma^2}{\left|1 - \sum_{p=1}^P a_p \exp(-j\omega p)\right|^2} = \sigma^2 \tilde{\phi}_{\text{AR}}(\omega) \qquad (23)
$$

where

 σ^2 is the excitation variance, ${a_p}_{p=1}^P$ are the *P* AR parameters, and $\widetilde{\phi}_{\sf AR}(\omega)$ is the normalized AR spectrum (i.e., $\sigma^2=1$).

 \blacktriangleright For a low AR-order, the AR spectrum is smooth.

NEW GRO.

2. Training AR codebooks

Typical AR-vectors of speech and noise can be obtained from training, and the results are stored in codebooks (Srinivasan et al., 2006, 2007). Both specific and general codebooks can be trained.

Suno NEW GI

A model \mathcal{M}_l is formed from a combination of AR-vectors in the speech and noise codebooks, i.e.,

$$
p(Y_k|\sigma_{E_k}^2,\sigma_{X_k}^2,\mathcal{M}_l)=\mathcal{CN}(0,\sigma_{E_k}^2\tilde{\phi}_{E_kE_k}^{(l)}+\sigma_{X_k}^2\tilde{\phi}_{X_kX_k}^{(l)})\,. \hspace{1cm} (24)
$$

Note that $\sigma_{X_k}^2$ and $\sigma_{E_k}^2$ are the only unknowns in every model!

4. Infer model parameters and probabilities and compute PSDs

- For every model, the excitation variances $\sigma_{X_k}^2$ and $\sigma_{E_k}^2$ as well as the model probability $p(\mathcal{M}_l | Y_k)$ can be computed using a variational Bayesian algorithm.
- **Figure 1** This algorithm also produces the PSD estimates $\hat{\phi}_{X_L}^{(l)}$ $\chi_{k}^{(I)}$ and $\hat{\phi}_{E_k}^{(I)}$ *EkE^k* for every model.
- \triangleright The final PSD estimates are given by

$$
\hat{\phi}_{X_k X_k} = \sum_{l=1}^L p(\mathcal{M}_l | Y_k) \hat{\phi}_{X_k X_k}^{(l)} \tag{25}
$$
\n
$$
\hat{\phi}_{E_k E_k} = \sum_{l=1}^L p(\mathcal{M}_l | Y_k) \hat{\phi}_{E_k E_k}^{(l)} . \tag{26}
$$

Single-channel Noise PSD estimation

So what did we observe?

- \triangleright To estimate the single-channel PSDs, we used autoregressive models trained on typical speech and noise data.
- \blacktriangleright This approach is advantageous since
	- \blacktriangleright it reduces the number of unknowns to just two model parameters in every frame (the excitation variances), and
	- \triangleright it allows us to include prior information about typical speech and noise signals.
- \triangleright The single-channel PSD estimates were computed by model averaging.
- \triangleright We now finally have all the information we need to run our multi-channel Wiener filter!

ASSESSM GROUND

[Speech Presence Probability Estimation](#page-11-0)

[Single-channel Noise PSD estimation](#page-19-0)

[Microphone Clustering & Distributed Implementation](#page-27-0)

[Experimental Results](#page-32-0)

[Summary](#page-42-0)

Microphone Clustering

- ▶ Recall that we now for each microphone *k* have a speech and a noise model parametrized by AR paramaters.
- \blacktriangleright Idea: What if we use the single-channel models for clustering of the microphones?
- \blacktriangleright Then each cluster would contain mics observing the same speech and noise spectra!
- \triangleright We can then use the clusters to perform enhancement of the closest speaker using a subnetwork.

Microphone Clustering

The Itakura-Saito divergence between spectra $\phi(\omega)$ and $\hat{\phi}(\omega)$ is defined as

$$
D_{\rm IS}(\phi(\omega),\hat{\phi}(\omega))=\frac{1}{2\pi}\int_{-\pi}^{\pi}\frac{\phi(\omega)}{\hat{\phi}(\omega)}-\log\frac{\phi(\omega)}{\hat{\phi}(\omega)}-1\,d\omega.\qquad\qquad(27)
$$

Given the speech and noise models for each mic, *k*,

$$
\hat{\phi}_{X_kX_k}(\omega)=\sum_{l=1}^L p(\mathcal{M}_l|Y_k)\hat{\phi}_{X_kX_k}^{(l)(\omega)} \quad \text{and} \quad \hat{\phi}_{E_kE_k}(\omega)=\sum_{l=1}^L p(\mathcal{M}_l|Y_k)\hat{\phi}_{E_kE_k}^{(l)(\omega)},
$$

we propose to assign mics to clusters using the following divergence between the centroid of cluster *c* and microphone *k*:

$$
D(c, k) = D_{\text{IS}}(\mu_{X_c X_c}(\omega), \hat{\phi}_{X_k X_k}(\omega)) + D_{\text{IS}}(\mu_{E_c E_c}(\omega), \hat{\phi}_{E_k E_k}(\omega)) \qquad (28)
$$

Microphone Clustering

The cluster *c* index set, C*c*, is defined as

$$
C_c = \{k|D(c,k) \leq D(b,k) \forall b\},\tag{29}
$$

and the centroid for the cluster is given by

$$
\mu_{X_cX_c}(\omega) = \frac{1}{|\mathcal{C}_c|} \sum_{k \in \mathcal{C}_c} \hat{\phi}_{X_kX_k}(\omega), \tag{30}
$$

and similarly for $\mu_{E_{c}E_{c}}$. In words:

 \blacktriangleright the microphones are assigned to the cluster that has the closest centroid in the sense of the IS divergence.

 \blacktriangleright the centroid is simply the mean of the member of the cluster. In practice, clustering does not need to be performed on a segment-by-segment basis.

Distributed Implementation

 \blacktriangleright The methods requires the following computations:

- ▶ Finding the optimal speech and noise models for mic *k* (local).
- \blacktriangleright Performing clustering based on these models (global).
- \triangleright Computing the SPP (global).
- \blacktriangleright The global computation problems can be solved using distributed consensus averaging methods.
- \triangleright We here use the asynchronous PDMM (Zhang and Heusdens, 2017) to solve these problems efficiently!

[Speech Presence Probability Estimation](#page-11-0)

[Single-channel Noise PSD estimation](#page-19-0)

[Microphone Clustering & Distributed Implementation](#page-27-0)

[Experimental Results](#page-32-0)

[Summary](#page-42-0)

Experimental Results

We will here present Experimental Results from the paper Y. Zhao, J. K. Nielsen, J. Chen, and M. G. Christensen *Model-Based Distributed Node Clustering and Multi-Speaker Speech Presence Probability Estimation in Wireless Acoustic Sensor Networks*, Journal of the Acoustical Society of America 147, 4189 (2020).

- **Focuses on**
	- 1. clustering nodes near speakers (distributed k-means with order estimation),
	- 2. computing an SPP for each cluster, and
	- 3. deriving algorithms for distributed processing (i.e. no fusion center)
- \triangleright Comment: It uses different features and metrics for clustering than what I have described here and uses the Calinski-Harabasz criterion for finding the number of clusters.

Experimental Results

Details:

- \triangleright Simulated 10 m × 10 m × 3 m room with $T_{60} \approx$ 200*ms*.
- \triangleright We use 50 randomly placed mics with connections to other mics within 2.5 m.
- \triangleright We use three speakers with the same power.
- ▶ Speech models trained on TIMIT and noise trained on AURORA.
- ▶ Testing is done on NOISEX-92 database.

Experimental Results Room setup

3 speakers and 50 microphones (nodes) in a dampened room $(T_{60} = 200 \text{ ms})$ with background noise. Edges indicate transmission paths.

Experimental Results Clustering example

Background noise is babble noise at SNR of 10 dB.

Experimental Results Detection example

Ground truth (upper) and estimated (lower) voice activity detection d (dark = absence and white = presence). False alarm rate is 0.2.

Experimental Results Detection performance

Speaker 1: It is better to use only the clustered microphones compared to all microphones.

Experimental Results Detection performance

Speaker 2: It is better to use only the clustered microphones compared to all microphones.

Experimental Results Noise PSD estimation methods

Results are for the microphones clustered around speaker 1 and babble noise at an SNR of 10 dB.

Experimental Results Convergence of distributed algorithm

Results for one node as a function of the number of iterations of the PDMM algorithm.

[Speech Presence Probability Estimation](#page-11-0)

[Single-channel Noise PSD estimation](#page-19-0)

[Microphone Clustering & Distributed Implementation](#page-27-0)

[Experimental Results](#page-32-0)

[Summary](#page-42-0)

- \triangleright Speech enhancement algorithms such as the multichannel Wiener filter works for WASN.
- ▶ We need to know the noise cross PSDs to run, e.g., the multichannel Wiener filter.
- \triangleright By using the concept of speech presence probabilities, we can estimate the noise cross PSDs from the single channel noise PSDs.
- \triangleright We have shown how the single-channel noise PSD can be estimated using a **model-based approach** and that mics can be clustered based on the so-obtained models.
- \blacktriangleright Simulations results show that
	- \triangleright clustering the microphones around the sources increases performance
	- \blacktriangleright the estimation of the SPP can be implemented using a **distributed** algorithm only requiring a few iterations

Questions?

DENMARK