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Motivation

Conventional array
I array geometry known
I synchronized sampling
I centralized processing

Wireless acoustic sensor
network (WASN)
I array geometry unknown
I unsynchronized sampling
I centralized/distributed

processing

Some applications
I Meetings
I Hearing aids
I Hearables
I Smart homes
I Digital assistants
I Surveillance
I IoT
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Multi-channel Wiener Filtering
The speech enhancement problem

From K noisy microphone signals {yk (n)}K
k=1, we wish to estimate a

target speech component s(n) to improve the
I speech intelligibility and quality
I speech recognition performance

However,
I we have more unknowns than observations so
I we need prior information about the speech, room, and/or noise

to solve the problem!
I even defining the target speech is difficult in WASN!
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Multi-channel Wiener Filtering
Mathematical model

At microphone k , we observe a noisy speech signal

yk (n) = (gk ∗ s)(n) + ek (n) = xk (n) + ek (n) (1)

where
gk (n) is the impulse response from the source to microphone

k
s(n) is the clean speech at microphone 1 (i.e., g1(n) = δ(n)),

ek (n) is the noise (including interfering speech), and
xk (n) is the clean speech signal recorded at microphone k .

In the frequency-domain, we have that

Yk (ω) = Gk (ω)S(ω) + Ek (ω) = Xk (ω) + Ek (ω) . (2)
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Multi-channel Wiener Filtering
Mathematical model

We can collect all K microphone signals in a vector so that

Y (ω) =


Y1(ω)
Y2(ω)

...
YK (ω)

 =


1

G2(ω)
...

GK (ω)

S(ω) +


E1(ω)
E2(ω)

...
EK (ω)

 (3)

= G(ω)S(ω) + E(ω) . (4)
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Multi-channel Wiener Filtering

Y (ω) H(ω) Ŝ(ω)

We will extract S(ω) by designing a filter H(ω) which
I filters out E(ω) and
I does not change S(ω),

i.e.,

Ŝ(ω) = HH(ω)Y (ω) = HH(ω)G(ω)S(ω)︸ ︷︷ ︸
should be S(ω)

+HH(ω)E(ω)︸ ︷︷ ︸
should be 0

. (5)
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Multi-channel Wiener Filtering

If we define the objective

J(H(ω)) = E
[
|S(ω)− HH(ω)G(ω)S(ω)|2

]
+ E

[
|0− HH(ω)E(ω)|2

]
,

(6)
its minimiser is the multi-channel Wiener filter given by

ĤMCWF(ω) = Φ−1
YY (ω) ([ΦYY (ω)]:,1 − [ΦEE(ω)]:,1) (7)

where
ΦYY (ω) is a matrix containing the cross PSDs of the

microphone signals, and
ΦEE(ω) is a matrix containing the cross PSDs of the noise

signals.
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Multi-channel Wiener Filtering

Some comments:
I We do not need to know the array geometry (i.e., G(ω)) to

implement the multi-channel Wiener filter.
I The multi-channel Wiener filter can cope with unsynchronized

microphones to the extend that G(ω) can absorb the
synchronisation errors (i.e., clock offsets).

I The multi-channel Wiener filter can be implemented using
distributed processing.

I While ΦYY (ω) is easy to compute from the microphone signals,

ΦEE(ω) =

φE1E1(ω) · · · φE1EK (ω)
...

. . .
...

φEK E1(ω) · · · φEK EK (ω)

 (8)

is much harder.
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Speech Presence Probability Estimation

For microphone pair (i , j) in frame l , the noise cross PSD φ̂Ei Ej (ω, l)
can be estimated recursively using a first-order IIR filter as

φ̂Ei Ej (ω, l) = α(ω, l)φ̂Ei Ej (ω, l − 1) + (1− α(ω, l))φ̂Yi Yj (ω, l) (9)

where
φ̂Yi Yj (ω, l) is the cross PSD between microphone signals i and j ,

and
α(ω, l) is the speech presence probability (SPP).
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Speech Presence Probability Estimation

In a traditional voice activity detector (VAD), we make a hard
decision.
H0: There is no speech. Set α(ω, l) = 0 so that

φ̂Ei Ej (ω, l) = φ̂Yi Yj (ω, l) (10)

H1: There is speech. Set α(ω, l) = 1 so that

φ̂Ei Ej (ω, l) = φ̂Ei Ej (ω, l − 1) (11)

13 / 43



M. G. Christensen | Speech Separation in Wireless Acoustic Sensor Networks

Speech Presence Probability Estimation

The SPP is a soft decision which we here define as

α(ω, l) = p(H1(ω, l)|Y (ω, l),θ(ω, l)) ∈ [0, 1] (12)

where
p(·) is a probability mass function

θ(ω, l) are model parameters (which are initially assumed
known).

To compute the SPP, we have to be a little more explicit about our
signal model.

Y. Zhao, J. K. Nielsen, J. Chen, and M. G. Christensen, Model-
based distributed node clustering and multi-speaker speech
presence probability estimation in wireless acoustic sensor net-
works, The Journal of the Acoustical Society of America 147,
4189-4201 (2020).
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Speech Presence Probability Estimation

Signal model
Assume for microphone k that1

No speech: p(Yk |φEk Ek , H0) = CN (0,φEk Ek ) (13)
Speech: p(Yk |φEk Ek ,φXk Xk , H1) = CN (0,φEk Ek + φXk Xk ) . (14)

Note that
I this model is not completely consistent with the derivation of the

multi-channel Wiener filter since it ignores correlation between
the microphones, and

I the model parameters for microphone k are

θk (ω, l) =
[
φEk Ek φXk Xk

]T . (15)

1We sometimes omit the frequency and frame indices to simplify the notation.
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Speech Presence Probability Estimation

Based on the model, we can calculate the likelihood ratio as

L(Yk |θk ) =
p(Yk |θk (ω, l), H1)

p(Yk |θk (ω, l), H0)
(16)

= (1 + ξk )
−1 exp

(
|Yk |2

φEk Ek

ξk

ξk + 1

)
, (17)

where ξk is the so-called a-priori SNR given by

ξk =
φXk Xk

φEk Ek

. (18)
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Speech Presence Probability Estimation

Since (also for H0)

p(Y |θ, H1) =
K∏

k=1

p(Yk |θk , H1) and L(Y |θ) =
K∏

k=1

L(Yk |θk ) (19)

it follows that so that the SPP can be calculated as

α = p(H1|Y ,θ) =
p(H1)L(Y |θ)

p(H0) + p(H1)L(Y |θ)
(20)

where p(H1) and p(H0) are priors. We can also easily incorporate
multiple frames and multiple frequencies in the computation of the
likelihood ratio!
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Speech Presence Probability Estimation

So what did we observe?
I If we have a SPP, we can estimate the required noise cross

PSDs to run the multi-channel Wiener filter.
I The SPP can be computed as

1. compute the likelihood ratio for every channel
2. combine the K likelihood ratios with prior probabilities.

I To compute the likelihood ratio in channel k , we have to know

θk (ω, l) =
[
φEk Ek φXk Xk

]T . (21)

In practice, however, these PSDs are unknown and must be
estimated from the data.
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Single-channel Noise PSD estimation

Many methods exist for single-channel noise PSD estimation. The
most well-known are
I minimum statistics (MS),
I improved minima controlled recursive averaging (IMCRA), and
I minimum mean squared error (MMSE).

These methods work well for stationary noise, but not for
nonstationary noise.
I In our previous work, we developed a new model-based noise

PSD estimator which works much better for nonstationary noise
(e.g., bable noise).
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Single-channel Noise PSD estimation
Model-based approach

Recall that we modelled the k ’th microphone signal as

p(Yk |φEk Ek ,φXk Xk , H1) = CN (0,φEk Ek + φXk Xk ) (22)

where
φEk Ek is the noise PSD, and
φXk Xk is the speech PSD (as observed at microphone k ) .

To estimate these, we do the following:
1. Assume that the clean speech and noise can be accurately

modelled by autoregressive (AR) processes.
2. Pre-train codebooks of AR-vectors (i.e., parametrised speech

and noise PSDs) that are typical for speech and for noise.
3. Form models of the microphone signal from all combinations of

trained speech and noise PSDs.
4. Infer model parameters and probabilities and compute model

averaged PSD estimates.
21 / 43



M. G. Christensen | Speech Separation in Wireless Acoustic Sensor Networks

Single-channel Noise PSD estimation
Model-based approach

1. Autoregressive spectral modelling
I AR processes have been used extensively in speech coding.
I The PSD of an AR process is

φAR(ω) =
σ2∣∣∣1−∑P

p=1 ap exp(−jωp)
∣∣∣2 = σ2φ̃AR(ω) (23)

where
σ2 is the excitation variance,

{ap}P
p=1 are the P AR parameters, and

φ̃AR(ω) is the normalized AR spectrum (i.e., σ2 = 1).
I For a low AR-order, the AR spectrum is smooth.
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Single-channel Noise PSD estimation
Model-based approach

2. Training AR codebooks

Typical AR-vectors of speech and noise can be obtained from
training, and the results are stored in codebooks (Srinivasan et al.,
2006, 2007). Both specific and general codebooks can be trained.
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Single-channel Noise PSD estimation
Model-based approach

3. Modelling microphone signal using AR-codebooks

A modelMl is formed from a combination of AR-vectors in the
speech and noise codebooks, i.e.,

p(Yk |σ2
Ek

,σ2
Xk

,Ml) = CN (0,σ2
Ek
φ̃
(l)
Ek Ek

+ σ2
Xk
φ̃
(l)
Xk Xk

) . (24)

Note that σ2
Xk

and σ2
Ek

are the only unknowns in every model!
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Single-channel Noise PSD estimation
Model-based approach

4. Infer model parameters and probabilities and compute
PSDs
I For every model, the excitation variances σ2

Xk
and σ2

Ek
as well as

the model probability p(Ml |Yk ) can be computed using a
variational Bayesian algorithm.

I This algorithm also produces the PSD estimates φ̂(l)Xk Xk
and φ̂(l)Ek Ek

for every model.
I The final PSD estimates are given by

φ̂Xk Xk =
L∑

l=1

p(Ml |Yk )φ̂
(l)
Xk Xk

(25)

φ̂Ek Ek =
L∑

l=1

p(Ml |Yk )φ̂
(l)
Ek Ek

. (26)
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Single-channel Noise PSD estimation

So what did we observe?
I To estimate the single-channel PSDs, we used autoregressive

models trained on typical speech and noise data.
I This approach is advantageous since

I it reduces the number of unknowns to just two model parameters in
every frame (the excitation variances), and

I it allows us to include prior information about typical speech and
noise signals.

I The single-channel PSD estimates were computed by model
averaging.

I We now finally have all the information we need to run our
multi-channel Wiener filter!
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Microphone Clustering

I Recall that we now for each microphone k have a speech and a
noise model parametrized by AR paramaters.

I Idea: What if we use the single-channel models for clustering of
the microphones?

I Then each cluster would contain mics observing the same
speech and noise spectra!

I We can then use the clusters to perform enhancement of the
closest speaker using a subnetwork.
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Microphone Clustering

The Itakura-Saito divergence between spectra φ(ω) and φ̂(ω) is
defined as

DIS(φ(ω), φ̂(ω)) =
1

2π

∫ π

−π

φ(ω)

φ̂(ω)
− log

φ(ω)

φ̂(ω)
− 1dω. (27)

Given the speech and noise models for each mic, k ,

φ̂Xk Xk (ω) =
L∑

l=1

p(Ml |Yk )φ̂
(l)(ω)
Xk Xk

and φ̂Ek Ek (ω) =
L∑

l=1

p(Ml |Yk )φ̂
(l)(ω)
Ek Ek

,

we propose to assign mics to clusters using the following divergence
between the centroid of cluster c and microphone k :

D(c, k) = DIS(µXcXc (ω), φ̂Xk Xk (ω)) + DIS(µEcEc (ω), φ̂Ek Ek (ω)) (28)
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Microphone Clustering

The cluster c index set, Cc , is defined as

Cc = {k |D(c, k) ≤ D(b, k)∀b}, (29)

and the centroid for the cluster is given by

µXcXc (ω) =
1
|Cc |

∑
k∈Cc

φ̂Xk Xk (ω), (30)

and similarly for µEcEc .
In words:
I the microphones are assigned to the cluster that has the closest

centroid in the sense of the IS divergence.
I the centroid is simply the mean of the member of the cluster.

In practice, clustering does not need to be performed on a
segment-by-segment basis.
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Distributed Implementation

I The methods requires the following computations:
I Finding the optimal speech and noise models for mic k (local).
I Performing clustering based on these models (global).
I Computing the SPP (global).

I The global computation problems can be solved using distributed
consensus averaging methods.

I We here use the asynchronous PDMM (Zhang and Heusdens,
2017) to solve these problems efficiently!
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Experimental Results

We will here present Experimental Results from the paper Y. Zhao, J.
K. Nielsen, J. Chen, and M. G. Christensen Model-Based Distributed
Node Clustering and Multi-Speaker Speech Presence Probability
Estimation in Wireless Acoustic Sensor Networks, Journal of the
Acoustical Society of America 147, 4189 (2020).
I Focuses on

1. clustering nodes near speakers (distributed k-means with order
estimation),

2. computing an SPP for each cluster, and
3. deriving algorithms for distributed processing (i.e. no fusion center)

I Comment: It uses different features and metrics for clustering
than what I have described here and uses the Calinski-Harabasz
criterion for finding the number of clusters.
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Experimental Results

Details:
I Simulated 10 m× 10 m× 3 m room with T60 ≈ 200ms.
I We use 50 randomly placed mics with connections to other mics

within 2.5 m.
I We use three speakers with the same power.
I Speech models trained on TIMIT and noise trained on AURORA.
I Testing is done on NOISEX-92 database.
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Experimental Results
Room setup

1

2

3

4

5

6

7

8

9

10

A
xi

s-
y 

(m
)

12

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22
23

24

25

26
27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

1 2 3 4 5 6 7 8 9 10

Axis-x (m)

Nodes
Speaker 1
Speaker 2
Speaker 3
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(T60 = 200 ms) with background noise. Edges indicate transmission
paths.
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Experimental Results
Clustering example
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Background noise is babble noise at SNR of 10 dB.
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Experimental Results
Detection example
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Ground truth (upper) and estimated (lower) voice activity detection
(dark = absence and white = presence). False alarm rate is 0.2.
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Experimental Results
Detection performance
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Speaker 1: It is better to use only the clustered microphones
compared to all microphones.
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Experimental Results
Detection performance
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Speaker 2: It is better to use only the clustered microphones
compared to all microphones.
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Experimental Results
Noise PSD estimation methods
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Results are for the microphones clustered around speaker 1 and
babble noise at an SNR of 10 dB.
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Experimental Results
Convergence of distributed algorithm
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Results for one node as a function of the number of iterations of the
PDMM algorithm.
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Summary

I Speech enhancement algorithms such as the multichannel
Wiener filter works for WASN.

I We need to know the noise cross PSDs to run, e.g., the
multichannel Wiener filter.

I By using the concept of speech presence probabilities, we can
estimate the noise cross PSDs from the single channel noise
PSDs.

I We have shown how the single-channel noise PSD can be
estimated using a model-based approach and that mics can be
clustered based on the so-obtained models.

I Simulations results show that
I clustering the microphones around the sources increases

performance
I the estimation of the SPP can be implemented using a distributed

algorithm only requiring a few iterations
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